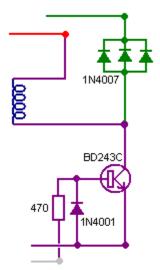
A Compilation/Summary of Devices that Produce Over unity - Rough Research Notes – by EZ3DBIZ.com


1N4007

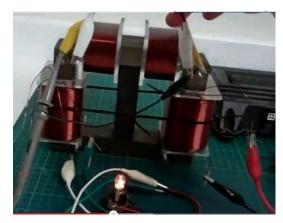
When the transistor switches off, the coils try to pull the transistor Drain connection down to a voltage well below the 0-volt battery line. To prevent this, a 1N4007 diode is connected across the cell and its coils. The diode is connected so that no current flows through it until the transistor Drain gets dragged down below the 0-volt line, but then that happens, the diode effectively gets turned over and as soon as 0.7 volts is placed across it, it starts to conduct heavily and collapses the negative voltage swing, protecting the transistor, and importantly, keeping the pulsed waveform restricted to positive DC pulses, which is essential for tapping this extra environmental energy which is what actually performs the electrolysis. You can easily tell that it is the environmental "cold" electricity which is doing the electrolysis as the cell stays cold even though it is putting out large volumes of gas. If the electrolysis were being done by conventional electricity, the cell temperature would rise during the electrolysis. A John Bedini pulser circuit can be used very effectively with a cell of this type and it adjusts automatically to the resonant frequency as the cell is part of the frequency-determining circuit.

A 1N4007 diode was used for the rectification of the collapsing field. When using higher voltages than 170V the collapsing field can be well over 1000V so care should be taken to obtain a high voltage diode such as ones found in microwave ovens. If that is still not enough then they can be wired in series to handle much higher voltage levels.

By using bridge rectifier (ultra fast) you can get 100 volts of DC. A high frequency switching output cannot be rectified properly by using normal bridge rectifier like 1N4007 or similar - The easiest way to SEE this effect is to take a 24VDC industrial relay, which basically has an enclosed field in the coil and movable armature. Place a HV diode (1000V at least, 1N4007) across it (this stops the ringing, keeps energy in the coil/solenoid and as it is NOT polarity sensitive, any current

You will notice that there are fourteen identical circuit sections. Each of these is quite simple:

This is a very simple transistor circuit. When the trigger line goes positive (driven by the magnet passing the coil) the transistor is switched on hard, powering the coil which is then effectively connected across the driving battery. The trigger pulse is quite short, so the transistor switches off almost immediately. This is the point at which the circuit operation gets subtle. The coil characteristics are such that this sharp powering pulse and sudden cut-off cause the voltage across the coil to rise very rapidly, dragging the voltage on the collector of the transistor up to several hundred volts. Fortunately, this effect is energy drawn from the environment which is quite unlike conventional electricity, and thankfully, a good deal less damaging to the transistor. This rise in voltage, effectively "turns over" the set of three 1N4007 diodes which then conducts strongly, feeding this excess free-energy into the charging battery. Ron uses three diodes in parallel as they have a better current-carrying capacity and thermal characteristics than a single diode. This is a common practice and any number of diodes can be placed in parallel, with sometimes as many as ten being used.


Additional Parts:2M ohm potentiometer (lin. taper)

001uF 50V ceramic disk capacitor

Ferrite core is why it ampfiles teh energy because it reduces the bleed off, just as a transformer does not have an iron rod to stop this bleed, any torroid or ferrite rod solves this problem.with coils short-circuited, and also with stack of magnets behind the cores of the generator coils, you can get motor to speed up. In this pariticular mtotor/generator the amount of speed-up happening has lots to do with the distance the coil and its ferrite core, is to the spinning rotor of 8 all-North facing rneodimium magnets magnets (the air-gap adjustment) As shown below a coil with 3 neo magnets shorted out increase the RPM's of the motor. Possibly a ferrite core coil does this. vVideo shown below: Name of video: Shorted coil speed up.mp4

Image below has 2 magnets in the center

Page 1 Meg Generator transistor type: A TIP3055 (possibly 2N3055) transistor, but can be any fast transistor

Shorting the circuit also helps start it as shown in this video:

http://www.youtube.com/watch?v=T9hvkr2G9Lw

Shorting the torroid also has been shown to boost voltage. Test shorting the transformer coil for this also.

This link shows schematics for Page 1 meg device:

http://www.youtube.com/watch?v=T9hvkr2G9Lw

https://www.youtube.com/watch?v=Ox63RvnIW08 (this link shows dc transformer) and schematic to drive two 1 watt bulbs.

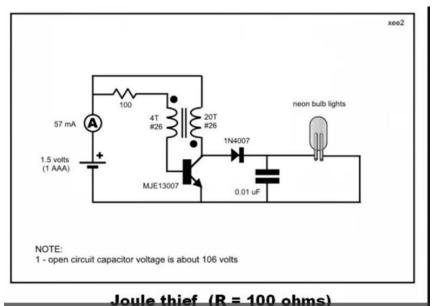
The Bedini circuit is similar because it also uses oscillation. more can be learned by copying out schematics from this video: http://www.youtube.com/watch?v=0eWhB76toq0

Bodkins Kick Starter 2 Transistor CFL circuit http://www.youtube.com/watch?v=8aXAAO2f1U8

Automotive ignition coil:

http://shelf3d.com/nrzRgDet_bl#2_ignition_coils_very_efficient_LED_driver_part1.flv

make your own ferrite coil:

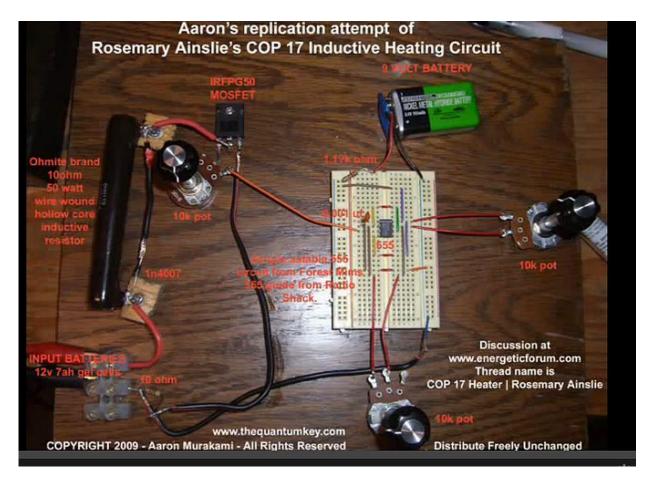

Shown above are 2 magnets mid center. top coils are shorted. right side is input left side is connected to load.

vide for above:

http://www.youtube.com/watch?v=iJsVSMQqCOM

video name: Self Assisted Oscillation in a Shorted Coil - Bucking Magnetic

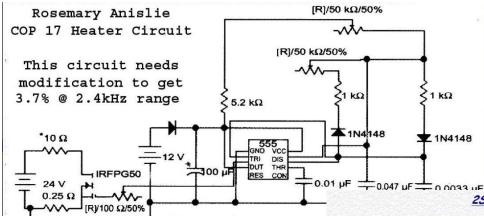
Torriods can also be taken from old CFL lamps



you can use this to wind your own coils 20 turns red #26 and 4 turns yellow #26

Energy is coupled from transmitter to the receiver magnetically through the air. Most transformers use a good flux concentrator (high relative permiability)such as steel or

ferrite to "herd" the flux lines together and direct them to the secondary. In our case, we just have air (mu_r = 1). How good the coupling is depends on the 3D placement of the two coils as well as any intervening medium (such as metal or ferrite).

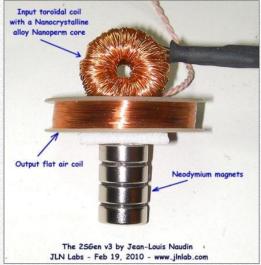

By introducing capacitors on both coils, a resonant circuit is formed between the inductance of the coil and the capacitor

Rosemary Ainslie Heater Circuit Replication Video for abvoe: (uses oscillation to run)

Over six years ago, the Rosemary Ainslie Circuit was originally reported by several witnesses and was independently Verified to have shown a Coefficient Of Performance greater than "17" (known as "COP>17"); specifically electrical energy efficiency in the heating of a resistive element. Meaning in this case; the circuit when properly built and tuned could show over "17 times" the heating efficiency that could be expected compared to a "conventional" device such as an electric "space heater" or "baseboard heater". So if a conventional household heater was rated at "1,700 Watts", a Rosemary Ainslie Circuit or similar concept-based device could produce the same amount of heat for only "100 Watts" of actual expended power...

http://www.youtube.com/watch?v=Z84u7--u3Qw

Discussion: www.en

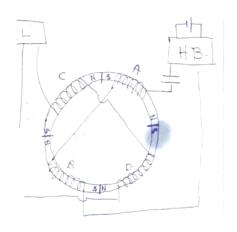

needed.

We have labeled the NPN transistor as BC547. This means you can use ANY NPN transistor, such as 2N2222, BC108, 2N3704, BC337 and hundreds of others. Some circuits use TUN for Transistor Universal NPN and this is the same as our reasoning - the transistor-type is just to let you know it is not critical.

BC557 can be replaced by: 2N3906, BC327 and many others.

Don't worry too much about the transistor-type. Just make sure it is NPN, it this is the type

25Gen PROJECT LOG BOOK


n v1.0 is an amazing Solid State Generator very simple to build, you will observe some very interesting results about the rties of a toroidal coil with a ferromagnetic core when it is used with a neodymium magnet.

1N4148

Have a wonderful Christmas All the best Brincan for Christmas and the New year Best Wisher, from

The original 1N4148 s that I chose because I had them at the time, were the best of any I tried, and indeed the only ones that worked at all.

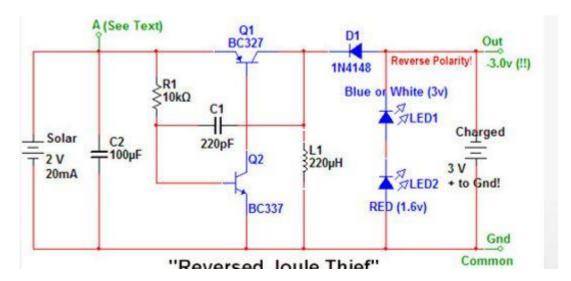
Simple Oscillator shown below. Circuit

It doesn't look like a toroid any more does it? Well It may not physically look like a toroid but magnetically I have Still got four separate cores an circuit. The circuit boards you see are a variable oscillator driving an H bridge which can reverse the polarity applied to the four primary coils whileg. The H bridge in practice can reverse polarity between a few Hz and Severn or eight Khz
The top four coils of course will feed the load having reversed one set in order to reverse the lenz effect as I explained in the PDF
It will not have escaped your eagle eye that this is very close to Ed Leedskalnin's PM holder

Video for image on left:

http://www.youtube.com/watch?v=zAcZDDUlbNE#t=84

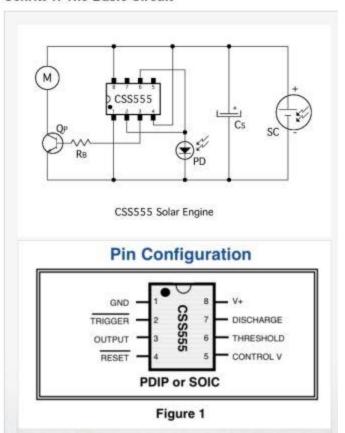
name of video:


Rare 2N2222 Transistor oscillator with very few parts

51 T1 2N2222

Motion activated joule thief led bike light - for later projects

Here is a totally different take on the Joule Thief (JT) circuit commonly found in garden lights. Instead of charging a 1.2v battery directly from the solar cell and converting the power to run a 3-volt LED, we'll be using the JT to convert the output from the solar cell and charging a Lithium battery first. Then when night falls, the battery is used to drive the LED directly.


This method has some advantages: (1) the Lithium cell that was chosen here (and avialable for \$2 here) has an output of 3-volts, which can drive a White LED directly; it also has a huge capacity (800mAH) and very low leakage. (2) The solar cell normally can only charge the NiCd battery in full, direct sunlight, but, with the JT circuit, it is able to deliver power to the Lithium cell even on overcast days.

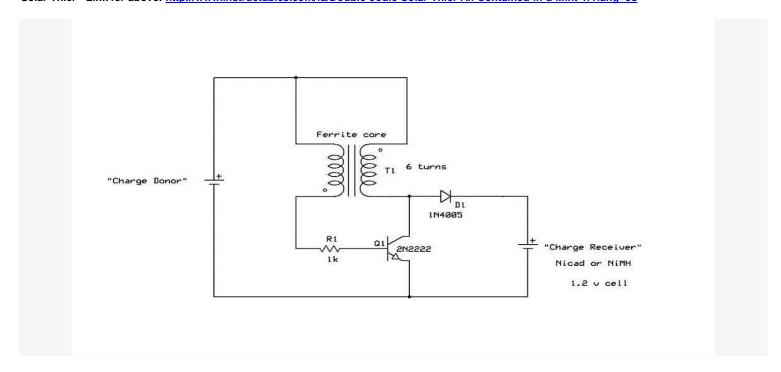
Link for above:

 $\underline{http://www.instructables.com/id/The-Reverse-Joule-Thief-Battery-Charger/?lang=de}$

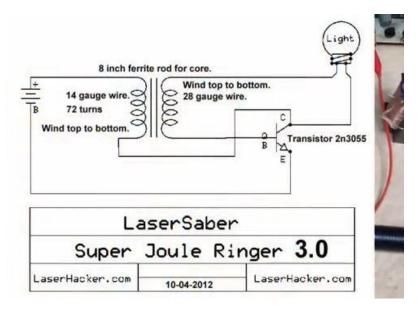
Schritt 1: The Basic Circuit

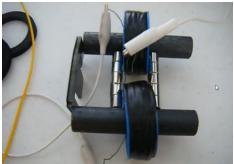
Solar Engine that activates the motor automatically when the battery reaches a certain voltage:

The main components of the CSS555 Solar Engine are labeled in this photograph. The CSS555 chip is available at Jameco.com. The solar cell shown here is a thin film on glass type available from imagesco.com (#SC-02). Although listed as an outdoor cell, it works very well on indirect and good room light. It is rated at 5.2V OC and 21mA SC. Cells rated as indoor type work well under fluorescent lighting, like calculator cells. Whatever cells are used, they should be capable of putting out a volt or two above the turn-on voltage of the solar engine to ensure an adequate rate of charge for the capacitor. The motor is a low current model suitable for solar operation. The static resistance of motors that work well with solar engines is in the neighborhood of 10 Ohms. A typical "toy" motor made to run on a battery or two is under 2 Ohms which is much too low for this kind of application; the capacitor will discharge through such a motor before it even begins to move. The capacitor shown is 0.1 Farad rated at 5 Volts. This solar engine has shown itself to work perfectly with capacitors ranging from 1000uF to 1.0F. A requirement for any capacitor in any low power solar engine is that it have a low ESR - under 1 Ohm. Most ordinary LEDs actually function as photodiodes, that is, when light falls on an unpowered LED, it outputs a voltage and current. A typical LED will usually put out around 1.2 Volts in bright light, but that varies among LEDs with some being a few tenths higher or lower. The output current of an LED is extremely small, but enough for the high impedance of the Trigger and Threshold pins of the CSS555. Now with an LED putting out 1.2V, the turn on voltage theoretically would be 3.6V and the turn off 1.8V. With 1.4V from the LED, turn on would be at 4.2V and off at 2.1V. This compares very well with measured voltages using a variety of LEDs: red tinted, clear red, green, yellow, small and large.


The output transistor in this circuit happens to be a ZVNL110A Mosfet, but an ordinary 2N3904 transistor works just fine. This circuit is made on a

small piece of Stripboard. Some of the details of construction are visible in the accompanying photos.


http://www.instructables.com/id/CSS555-Solar-Engine/?lang=de

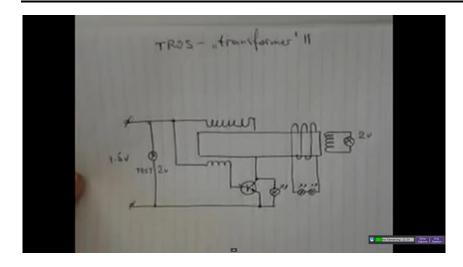

Solar Tracker Circuit Schematic

http://www.electroschematics.com/8019/diy-solar-tracker-system/ i used 1N4001 and 2N3904 and have about 25 turns on my toroid Double Joule Solar Thief Link for above: http://www.instructables.com/id/Double-Joule-Solar-Thief-All-Contained-in-a-Mint-T/?lang=es

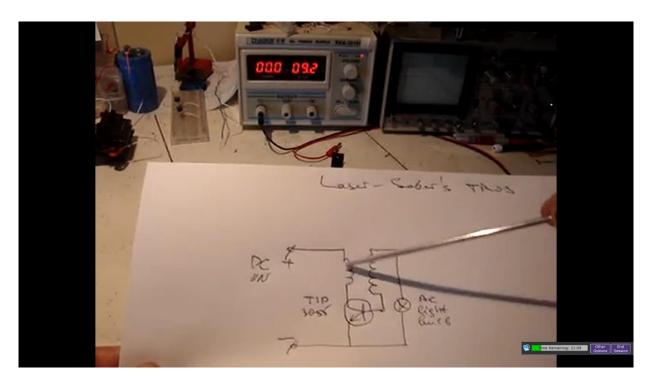
Right Image - Iron rod in center When charged / energized the metal on both ends sticks hard.

Video assemble instructions:

http://www.youtube.com/watch?v=vVXzGcyzu6o


Super Joule Ringer 3.0 Tips for Success

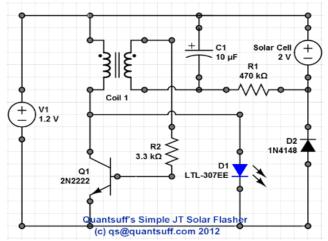
http://www.youtube.com/watch?v=DcFHZMhnV2g Super Joule Ringer 3.0 real world power made easy


Video name:

Boostpack and solar panel;


http://www.youtube.com/watch?v=z0a-2Zcy-VI

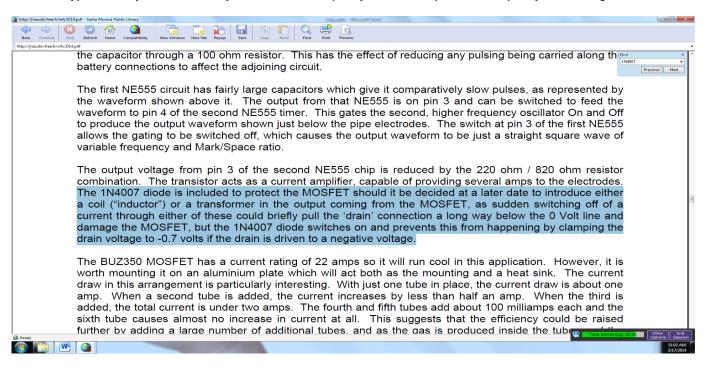
Oscillation using coils



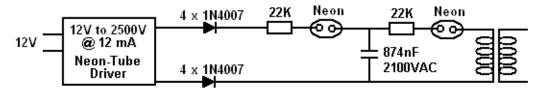
The 2 coils are torroid coils. http://www.youtube.com/watch?v=0eWhB76toq0

Above is bedini osscilation with magnet in the center. at 1:40 mins into this video, shows a good amperage booster circuit using joule ringer. a joule ringer may boost amperage. http://www.youtube.com/watch?v=M3YWB-noPNo How to build a starchip coil: Starship Coil Charger

For more permanent installations, the circuit can be make to recharge a NiCd (or NiMH) battery by adding a Solar Cell that charges the battery through a simple diode (D2, 1N4148 or similar). The circuit will stay off for as long as it is bright out because the Solar cell's negative lead is attached to R1 and this pulls the Base of the transistor low to shut it off completely. The Solar cell can be any scrounged off a Garden Solar light that is capable of 2-volts at 20 to 30 milliAmps. With the components specified, it flashes once a second (if it flashes too quickly, increase R1 to 560K and/or add a 0.1uF from C1[-] to Ground) and it only requires 80mA to run for an entire night. A NiCd button cell or even a 10-Farad supercap is enough to keep it going.

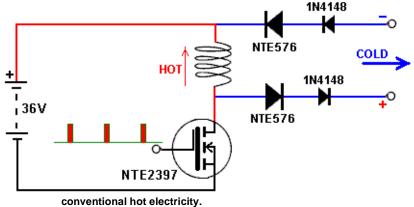


Left image from: http://quantsuff.com/LED2.htm


Used in squeeze flashlight: Parts: 1 small relay 24V (watch if the contact lever is useful), 1 magnet 8mm diameter 4mm thick, 4 diode's 1N4148 or 1N914, 1 LED, 1 resistor 47 ohm, 1 capacitor 1000 microfarad 16V and a piece of printboard.

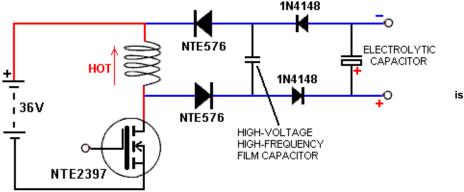
When the transistor switches off, the coils try to pull the transistor Drain connection down to a voltage well below the 0-volt battery line. To prevent this, a 1N4007 diode is connected across the cell and its coils. The diode is connected so that no current flows through it until the transistor Drain gets dragged down below the 0-volt line, but then that happens, the diode effectively gets turned over and as soon as 0.7 volts is placed across it, it starts to conduct heavily and collapses the negative voltage swing, protecting the transistor, and importantly, keeping the pulsed waveform restricted to positive DC pulses, which is essential for tapping this extra environmental energy which is what actually performs the electrolysis. You can easily tell that it is the environmental "cold" electricity

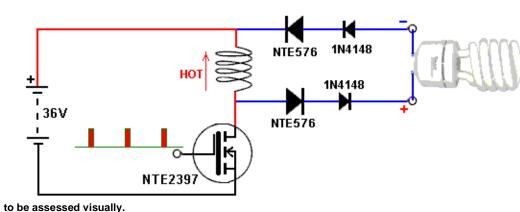
which is doing the electrolysis as the cell stays cold even though it is putting out large volumes of gas. If the electrolysis were being done by conventional electricity, the cell temperature would rise during the electrolysis. A John Bedini pulser circuit can be used very effectively with a cell of this type and it adjusts automatically to the resonant frequency as the cell is part of the frequency-determining circuit.


There is a most impressive video and circuit shown here where a very simple arrangement produces an immediately successful performance for the front end of Don's circuitry. The circuit appears to be:

Here, a simple Neon Sign Transformer module which has no earth connection, is used to produce a 2.5 kV voltage with a frequency of 25 kHz and a maximum output current capacity of 12 mA. There is no difficulty in constructing the equivalent to that power supply unit. The two outputs from the module are converted to DC by a chain of four 1N4007 diodes in series in each of the two outputs (each chain being inside a plastic tube for insulation). Interestingly it's very similar to how i have been driving coils before, i always use an 1n4007 across my pulsed coil, i use a fet driver to drive the fet, the difference i can see is a transformer and capacitor in series with the load & diode.

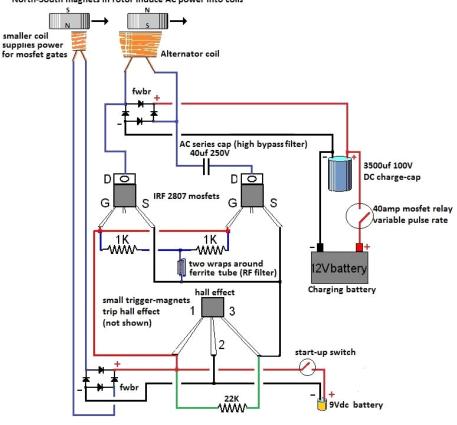
The 1N4148 Diode

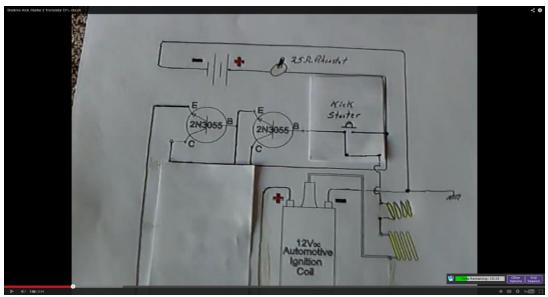

The two "1N4148" diodes are there to make sure that when the Mark/Space 47K variable resistor is adjusted, that it does not alter the frequency of the output waveform in any way. Very surprisingly, it is recommended that the powerful high-speed diode used to channel the cold electricity out of the circuit, be followed by a small 1N4148 silicon epitaxial planar high-speed diode (75V 0.45A) as this is said to clean up the cold electricity output even more. It is important that the cold electricity has to encounter the more powerful silicon diodes before reaching the 1N4148 diodes, so the order of the diodes is very important, and should be as shown here:



Alternative diodes for the NTE576 (6A, 35nS, 400V) are the NTE577 (5A, 70nS, 1000V) and the HFA16PB (16A, 19nS, 600V). The main requirement is high-speed operation, voltage rating of at least 400V and current rating of at least 5 amps..

There is one additional thing to be done with this circuit when a DC output is required and that is to apply filtering to the output. First, when the energy has passed through the NTE576 (or equivalent) power diodes, it encounters a high-frequency (low capacity) high quality film capacitor placed across the output in order to siphon off any high-frequency voltage ripple before it is passed through the small 1N4148 diodes and into a smoothing and storage electrolytic capacitor. Storing the cold electricity in the electrolytic capacitor converts it into

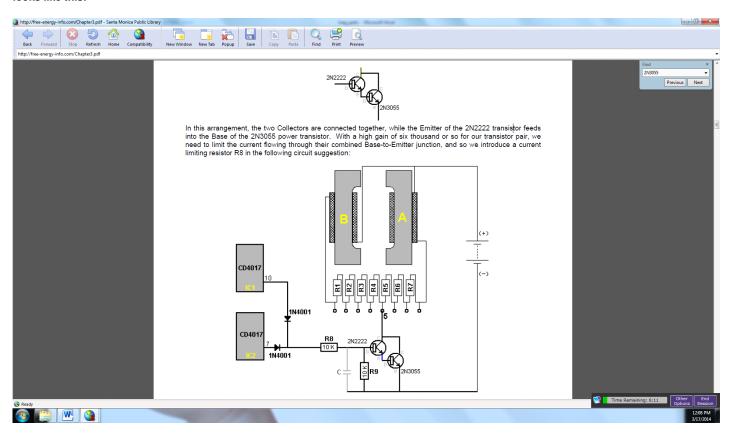

While this circuit (shown below) looks like something which you just switch on and it works, that is not the case as there is an essential start-up procedure where the signal applied to the transistor started at just a few cycles per second and 50% duty cycle and that input is then adjusted carefully and slowly while monitoring the voltages and currents produced by the circuit. This is a seriously powerful system with the capability of producing a major power output.


It is very important that the circuit is not powered up without a suitable load on the cold electricity output. A suitable load is a self-ballasted 230-volt fluorescent light. It must be understood that just flipping the power switch to it's ON position is not sufficient to get an inflow of cold electricity. Instead, it is necessary to progress the start-up sequence carefully, and a fluorescent light is particularly helpful for doing this although a neon bulb is also a popular choice of temporary load, because these devices allow the current flow in the load

North-South magnets in rotor induce AC power into coils

Ambient Energy Collector based on the MEG principles. This layout is by Ismael Aviso who uses it to drive a car. Use pulses as short as possible in "kicking" coil, because the displacement current depends on the speed of the changes in the magnetic field. Subjecting a ferromagnetic to a short electromagnetic pulse even without an external magnetic field, causes the acquisition of spin precession (domains will have group behaviour, and so ferromagnetics can easily be magnetised).

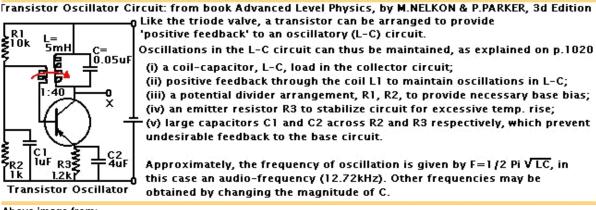
The 2N2222 Transistor



Video for above: Uses 2N3055 transistor

http://www.magistrala.cz/freeenergy/2008/11/29/bodkins-kick-starter-2-transistor-cfl-circuit/

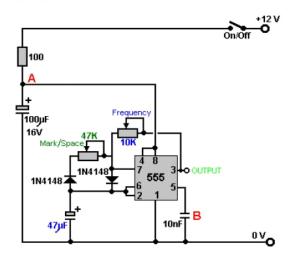
Video Title: Bodkins Kick Starter 2 Transistor CFL circuit. As the transistor has to carry the current which passes through the electromagnets, it needs to be able to handle considerable current flow. The very common 2N3055 transistor can do that (as can many other suitable transistors). The switching rate is very, very slow for a transistor and so speed is not an issue. The voltage is very low, and so that is not an issue either and so the 2N3055 transistor (used in joule ringer) is definitely a possible choice. In common with most high-power transistors, the current gain is low being between 20 and 30 typically. That means that to switch it on properly, a current of one twentieth of the switched current has to be fed into the base of the transistor. That base current is too high to be convenient, so we can raise the transistor gain to around 6000 by adding in a


low-power transistor such as the 2N2222 transistor. The two transistors are connected together in a configuration called a 'Darlington Pair' which looks like this:

In this arrangement, the two Collectors are connected together, while the Emitter of the 2N2222 transistor feeds into the Base of the 2N3055 power transistor. With a high gain of six thousand or so for our transistor pair, we need to limit the current flowing through their combined Base-to-Emitter junction, and so we introduce a current limiting resistor R8 in the following circuit suggestion as shown above.

The 10K resistor value shown would limit the transistor current to about nine amps, while a 4.7K resistor would allow around eighteen amps. Each transistor pair is only on for one eighth of the time, but the 2N3055 transistors need to be mounted on a heat-sink. If a single metal plate is used as a heat-sink for all eight 2N3055 transistors, then mica washers (available from the supplier of the transistors) must be used between each transistor and the plate because the Collector of each 2N3055 transistor is it's metal case and in this circuit, the Collectors do not connect to a common point. The mica washers pass heat but not electricity. Separate heat-sinks can, of course, be used.

3 – 27 The capacitor "C" in the above circuit diagram will probably not be needed. The switching needs to maintain a constant current flow through both electromagnets. I would expect the 4017 chip switching to be fast enough to allow this to happen. If that proves not to be the case, then a small capacitor (probably 100nF or less) can delay the switch-off of the transistors just long enough to allow the next transistor in the sequence to be switched on to provide the required 'Make-Before-Break' switching.



Above image from:

http://tesla3.com/free websites/zpe bedini solid.html

In this rather unusual circuit, the rotor winding of an alternator is pulsed via an oscillator circuit which has variable frequency and variable Mark/Space ratio and which can be gated on and off to produce the output waveform shown below the alternator in the circuit diagram. The oscillator circuit has a degree of supply de-coupling by the 100 ohm resistor feeding the 100 microfarad capacitor. This is to reduce voltage ripple coming along the +12 volt supply line, caused by the current pulses through the rotor winding. The output arrangement feeding the pipe electrodes of the electrolyser is copied directly from Stan Meyer's circuit diagram.

This is the section of the circuit which does this:

I adjusted the charging/discharging cycle of the capacitor at around 2 seconds of charging and 1/3 second for discharging. Resistor values: R1 = 100 Ohm; R2 = 34 kOhm (50 kOhm potentiometer)

The negative lead out of the battery is going through a 100K ohm resister.

his exciter is being excited through this one hundred K OHM resistor and causing spatial energy coherence via this.

For above text see:

The 100 ohm resistor and the 100 microfarad capacitor are there to iron out any ripples in the voltage supply to the circuit, caused by fierce pulses in the power drive to the electrolysis cell. The capacitor acts as a reservoir of electricity and the resistor prevents that reservoir being suddenly drained if the power supply line is suddenly, and very briefly, pulled down to a low voltage. Between them, they keep the voltage at point "A" at a steady level, allowing the 555 chip to operate smoothly.

The very small capacitor "B" is wired up physically very close to the chip. It is there to short-circuit any stray, very short, very sharp voltage pulses picked up by the wiring to the chip. It is there to help the chip to operate exactly

http://beforeitsnews.com/free-energy/2011/05/stifflers-space-energy-coherence-lights-up-608098.html (which is an ambient energy collector using a battery)

100 ohm variable resistor can also be made available. Wire wound ones last better due to high temps and voltages.

This combination: Toroid, 100 ohm, 2N3055 transistor is used to make a joule thief.

Using diodes and transistors as solar cells http://hackaday.com/2012/04/13/using-diodes-and-transistors-as-solar-cells/

2N3055 Transistor:

Using Bedini patent below is the connections 2n3055 transistor

trigger coil start to 680 ohms 1/4 w to base and end to + supply

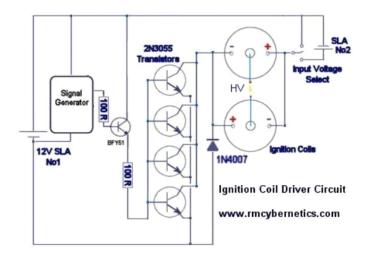
coil 2 start to + supply end to C of TRAnsistor 1 then to a diode to Battery 1 charge

Coil 3 start to + SUPPLY AND END TO c transistor 2 then to a diode to battery 2

e to c have 1n4007 diode instead of 18 k

b to c 10 k 1/4 w

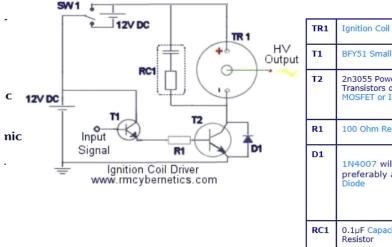
Min2oly has a sketch made in energy science forum sg oscillator thread by bedini, think i will change to this one as my present build had steady output wihout the variable pot for testing

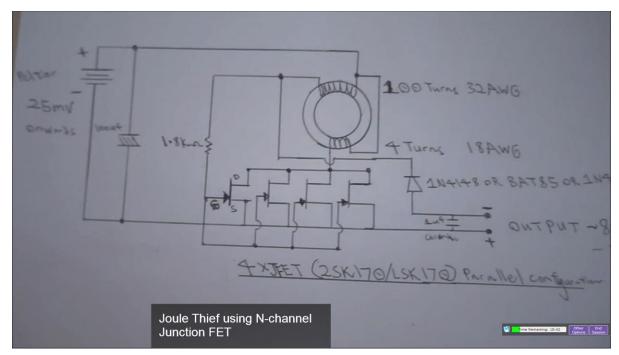

since im using sla and solar instead of bench power supply, I will change to alum battery to have conclusive result my coil 18 ga trifilar twisted is for heavy duty purpose 30 meters, think u can use 23 ga 40 ft for small batteries

RC1 is used to help suppress high voltage spikes that can destroy the power transistors.

T2 represents two power transistors connected in parallel and mounted on a heatsink.

This next circuit is designed for a higher powered output. Two ignition Coils are connected in parallel but with o This means that the output voltages of each coil are out of phase or opposite to each other (when one is positiv negative). Using this configuration the output is taken from the two coils output terminals, whereas the circuit a output terminal and ground.




WARNING: High Voltage is generated by this device!

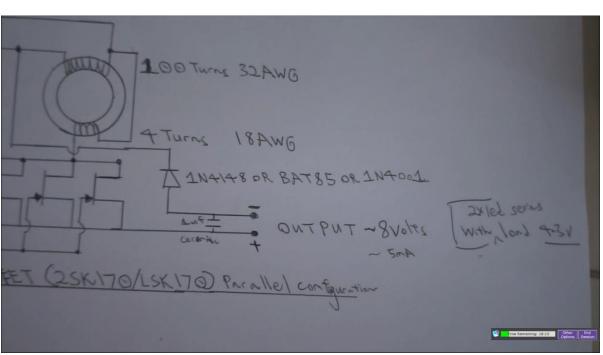
Standard ignition coils can be obtained from most car parts stores for around £25. It is not essential to use two 12V batteries like shown in the circuits shown below, but it will allow you to obtain bigger sparks. We have some compact induction coils available for sale for under £20. Click the link to check stock.

This driver circuit is based on the commonly used 2n3055 transistor due to it high power switching capability. While these are cheap and high temperature tolerant, they are susceptible to voltage spikes caused by the inductive nature of the load (ignition coil). Pretty much any power transistor, IGBT or MOSFET can be used in this circuit as long as it is rated for at last 5A and 100V. Ones with higher voltage ratings will be less likely to be damaged by spikes. Further protection methods are outlined lower down this page and in the comments. If you use a MOSFET or IGBT instead of a bipolar transistor like the 2n3055, you should also add a pulldown resistor of about 10k between the base/gate pin and GND.

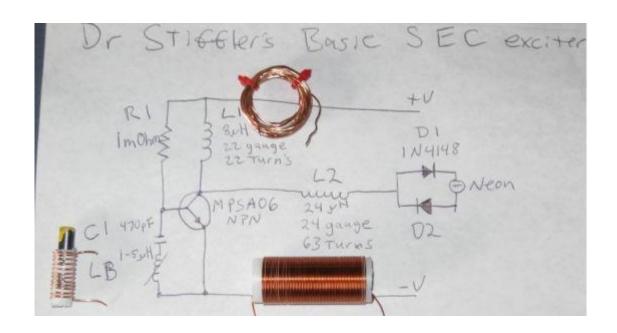
IKI	Ignition Coll
T1	BFY51 Small Transistor
Т2	2n3055 Power Transistors or HV MOSFET or IGBT
R1	100 Ohm Resistor
D1	1N4007 will do but preferably a Schottky Diode
RC1	0.1µF Capacitor + 10K Resistor

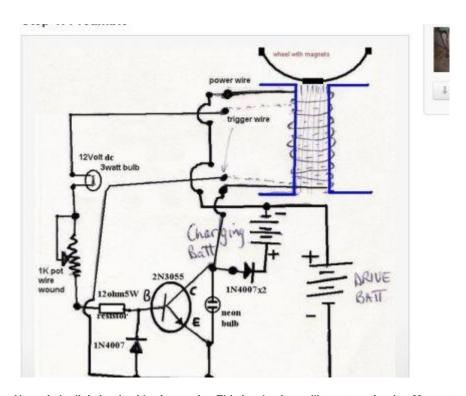
The left uses body heat to boost voltage up to 8 volts.

Link for above:

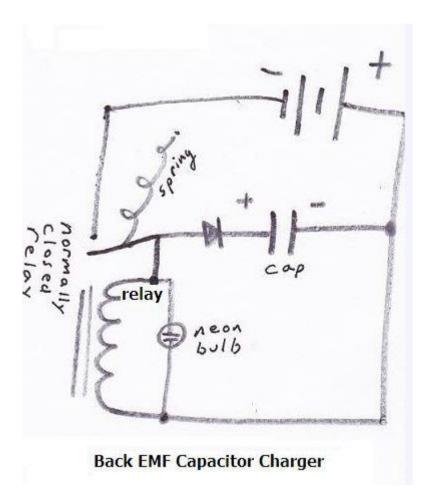

http://www.youtube.com/ watch?v=Fzww6yPQMrg

Video Name: Ultra lowest 25mV self starting Joule Thief ver1.0-Free Energy


Interesting circuits:


http://quantsuff.com/LED 2.htm

http://www.neazoi.com/xtalpage/



http://www.youtube.com/watch?v=8aXAAO2f1U8

Above is bedini circuit with trigger wire. This is a basic oscillator type circuit. More at: http://www.instructables.com/id/Bedini-Monopole-Mechanical-Oscillator/

Here's a really simple circuit you can build to capture Back EMF from a coil to charge a capacitor which employs a normally-closed relay. The relay basically becomes a buzzer, too.

Massless Displacement Current

Technically one is using massless displacement current to charge the capacitor, rather than electron mass flow current. It is real energy flow nonetheless; just in work-free, dissipation-free form. As is well-known, one plate of a capacitor already charges the other plate by just this very massless displacement current, transporting real EM energy across the gap between the plates in the process. The electrons themselves do not cross the gap. Displacement current is already well-known to be "free" energy transport without any dissipation as power and work. By drawing massless displacement current only from the source-antenna instead of electron flow current, you can draw work-free, dissipation-free energy as long as you wish, as often as you wish, and as much as you wish, without ever dissipating the source-antenna. You just have to collect it onto some trapped electrons or other charges, such as in a capacitor's plates, then switch the collected energy (charged capacitor) separately across a load, in a separate discharge circuit, to discharge through the load as work. The real trick is to prevent the electrons in the circuit from moving and providing mass "energy dissipation" current inside the source during the collection process. In the original paper, we explained that this could be done by using as a collector a degenerate semiconductor material, with extended electron gas relaxation time. In this paper we have explained how this can be done by step-charging an ordinary capacitor as a collector. We have also included specific references proving (both experimentally & theoretically) that this is correct. With the requirement for special materials removed, there is no reason that a competent researcher cannot develop a step-charged capacitor device to prove it experimentally for himself or herself.

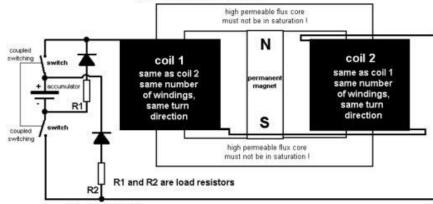
Capacitor Discharge Assembly Unit and Plans: The entire unit is \$17.00 http://www.talkingelectronics.com/projects/CDU-2/CDU-2.html

-usy iii-s

by Dipl. Ing. Stefan Hartmann harti@harti.com copyright 2002 by www.overunity.com released 28th of Sept. 2002

(omnidyne@hotmail.com) free for noncommercial personal use all commercial use must aquire a license from the author. Use it at your own risk, I take no responsibility for wrong use I

You can build MEMA from a simple 3 phase trafo, applying DC for the centre.


Hint: You can obtain DC from LC resonance through full wave rectifying bridge. It is an aspect of tuning.

The EasyMEG circuit will charge the capacitor if the resonance parameters are met.

Again – key to overunity is using appropriate pulse lengths.

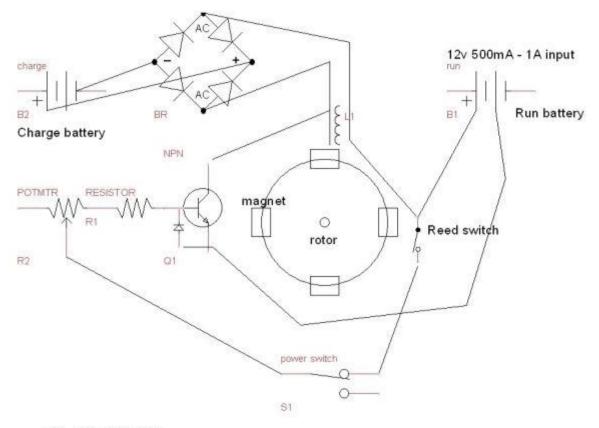
Good Karma The last shirt has no pockets ! 50 % of the license MUST be donated to charity !

principle circuit diagram:

Working principle:

Both switches must be toggled fast ON and OFF.

This could also be done by electronic switching.


The flux from the permanent magnet is divided equally into each core leg, when the 2 switches are OFF.

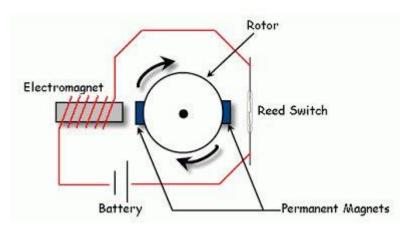
When both switches are toggled ON, the magnetic fields from the coils pushes the permanent magnet flux from the left core leg into the right core leg, so all permanent magnet flux is flowing in the right core leg only.

Now when the switches are switched OFF the flux from the right core leg tries to balance again back to equilibrium state.

As the coils are now connected via the diodes and the 2 load resistors R1 and R2 in the right direction of the Back EMF Voltage, the equilibrium flux change drives huge energy back to the accumulator and recharges it.

Simple Meg Diagram Above:

R1 - 50 to 150 ohm

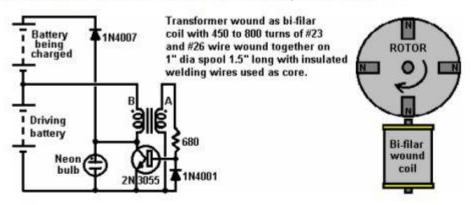

R2 - 1kohm to 10kohm

Q1 - tip42, tip3055, 2n3055 or similar bipolar NPN transistor

L1 - coil with metal core, at least 800 turns 30gauge or smaller

PWM can be used in place of POT for more efficiency

Capturing Back EMF from a coil

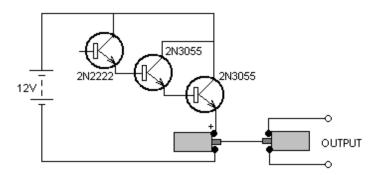

Here's an example of the simplest i believe it can get. A reed switch that is activated by a facing magnet. Once activated it closes the connection to the battery and sends energy into the electromagnet causing the magnet to repel and the wheel to rotate and continue the cycle.

http://magneticitist.webs.com/pulsemotors.htm

2. Energy can be captured via a strong and very brief magnetic pulse (continued)

Ed Gray snr/Creative Science, Robert Adams, John Bedini, Peter Lowrie, Paul Baumann

John Bedini. John Bedini has produced many working devices over the past years. Probably the most important are the devices for tapping the surrounding energy field. John has constructed devices which look like pulse motors and which have run non-stop for years. These devices are not motors but are mechanisms for collecting energy from the local environment. Several of his circuits have been published. Here is one:


The circuit operates as follows:

- 1. The rotor moves round passing the bi-filar wound electromagnet.
- 2. This generates a voltage in winding A of the coil.
- 3. The voltage at A is fed to the base of the 2N3055 transistor, switching it on.
- 4. The transistor drives a heavy current through winding B of the coil.
- This pushes the rotor, keeping it rotating.
- The magnet moves away and the voltage at A collapses and overshoots the -ve rail (the battery 0V line).
- The 1N4001 diode protects the transistor by restricting the reverse voltage to -0.7 V.
- The voltage at B collapses, overshoots the rail by a major amount and is fed into the recharging battery via the 1N4007 diode. This charges the second battery.
- 9. The neon is included only to protect the transistor if the battery connections are broken.

The 1N4001 diode can carry 1A current and has a peak repetitive inverse voltage of 50V while the 1N4007 diode can carry 1A current and has a peak repetitive inverse voltage of 1000V.

This looks like a motor but it is not. It is a generator which taps the external energy field in step 8 above, returning 'cold' electricity to the battery under charge. It is said that if the charging battery is almost fully discharged and after a few minutes of charge, that battery is disconnected, it continues to bubble for a considerable time, and its voltage continues to rise although it is disconnected. The rotor is only to move a permanent magnet past the bifilar coil and is not intended to power-generating coils. The moving magnet system has been found to be much more effective than providing a solid-state pulse through an additional winding.

One oscillator arrangement for this type of circuit has been shown to be:

It is not at all clear if the oscillation is being caused by the effect of the open base of the 2N2222 transistor or if the transistor is picking up mains hum from mains wiring near the circuit and switching because of induced voltage from the mains. It should not be forgotten that an earth wire is capable of providing serious input power to a circuit as the Earth is a major source of electrical power.

This stepping up of the voltage and the high frequency, followed by stepping them back down again does indeed result in a power increase as energy flows into the circuit from the local environment. However, ideally we would like the frequency to exceed 20 kHz, rather than the 3 kHz being used here. An iron cored coil can't operate properly at a frequency as high as that, but John Stone of the energetic forum points out that some car coils, such as the ones intended for use in a Fiat "Punto" car, have the two coils separate from each other and there is a (very important) air gap between the iron core and the coils. He remarks that it should be possible to remove the iron core and replace it with ferrite, maintaining the air gap, and allowing the car coil to operate at high frequencies. If the circuit does not oscillate naturally at high frequency with a ferrite cored coil, then the transistors can be driven faster by being driven by a transistor or 555 chip oscillator to get the frequency over the 20 kHz needed for major power gains.

Singing Rod:

http://www.teachersource.com/product/singing-rod/sound-waves